Foundation for Success

Unified International
Mathematics Olympiad

## UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD

```
CLASS - 6
    Question Paper Code : UM9274
```

KEY

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | B | B | A | B | A | B | B | A | C |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A | B | D | A | B | D | A | B | A | D |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| C | C | B | B | B | C | B | B | B | A |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| $\mathrm{~B}, \mathrm{C}, \mathrm{D}$ | $\mathrm{A}, \mathrm{B}, \mathrm{D}$ | $\mathrm{A}, \mathrm{B}, \mathrm{C}$ | $\mathrm{C}, \mathrm{D}$ | $\mathrm{A}, \mathrm{C}, \mathrm{D}$ | A | B | C | D | B |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| A | C | C | C | C | C | B | B | A | B |

## EXPLANATIONS

## MATHEMATICS - 1 (MCQ)

1. (C) The number of lines of symmetry for the given figure $\square$ is 2 , as shown

2. (B) All the three bulbs glow at once at 8 a.m. The time when they glow simultaneously again
$=$ L.C.M. $(24,48,54)$ seconds
$=216$ seconds
$=3$ minutes 36 seconds
$\therefore \quad$ The time when the three bulbs glow together again is at 8:03:36 a.m.
3. (B) LHS $=1+2+3+4-5-7-8+9+10+11$
$+12-13-14-15-16+\ldots 2019$
$=(1+2+3+4-5-6-7-8)+(10+11$
$+12-13-14-15-16)+\ldots . .+(2009+$
$2010+2011+2012-2013-2014-2015$
$-2016)+2017+2018+2019$
$=\underbrace{(-16)+(-16)+(-16) \ldots .+(-16)}_{252 \text { times }}+6054$
$=-16 \times 252+6054$
$=-4032+6054$
$=2022$
4. (A) Area of inner square $=(45 \mathrm{~m})^{2}$
$=2025 \mathrm{~m}^{2}$
Area of outer square $=(2025+475) \mathrm{m}^{2}$
$=2500 \mathrm{~m}^{2}$
$\therefore \quad S^{2}=(50 \mathrm{~m})^{2}$
Side of outer square $=50 \mathrm{~m}$
Width $=50 \mathrm{~m}-45 \mathrm{~m}=5 \mathrm{~m}$
5. (B) In the given figure $\mathrm{P}, \mathrm{Q}$ lie on the same line, but o lie on other line. Points not lying on the same line are called noncollinear points
6. (A) Area of a photo $=12 \times 18=216 \mathrm{sq} . \mathrm{cm}$ Cost of frame per square centimetre = ₹ 1.20
$\therefore \quad$ Cost of framing $=216 \times$ ₹ 1.20
= ₹ 259.20
7. (B) $M \& M+1$ are prime means both numbers must be 2 \& 3
$\therefore \quad m=2 \& m+1=3$
$M(M-2)+1=2(2-2)+1=0+1=1$
Which is neither prime nor composite.
8. (B) Greatest 5 digit number using the digits
$8,7,0,1=88710$
Smallest 5 digit number using the digits $8,7,0,1=10078$
$\therefore \quad$ required difference $=88710-10078$
$=78632$
9. (A) If $a=4 \& b=3$ then LCM of $4 \& 3$ is 12

If $b=3 \& c=5$ then LCM of $3 \& 5$ is 15
$\therefore \quad$ LCM of $\mathrm{a} \& \mathrm{c}$ is 20 which is the least value
(OR) LCM of $a \& c=\frac{\operatorname{LCM} \text { of }(a \& b) \&(b, c)}{\operatorname{HCF} \text { of }(a, b) \text { and }(b, c)}$
$=\frac{60}{3}=20$
10. (C) LHS $=190-[18-\{8-(16-4) \div 3\}]$
$=190-\left[18-\left\{8-\frac{12}{3}\right\}\right]$
$=190-14$
$=176$
11. (A) $*$ is replaced by ' 2 ' so the given number is divisible by 11 .
12. (B) Given the ratio of questions $=2: 2: 1$
$=2 x: 2 x: x$
Total marks $=2 x \frac{1}{2}+2 x \times 1+x \times 2$
$\Rightarrow x+2 x+2 x=100$
$5 x=100$
No. of two mark questions $=x=20$
13. (D) Karan, Rahim, Kiran marbles ratio
$=2: 5: 7=2 x: 5 x: 7 x$
Total marbles $=2 x+5 x+7 x=14 x$
Given $14 x=280$
$x=20$
Difference of marbles between kiran and kara $=7 x-2 x=5 x$
$=5 \times 20=100$
14. (A)

| 20, 25, 35, 40 |  |
| :---: | :---: |
| 2 | 4, 5, 7, 8 |
|  | $2,5,7,4$ |
|  | 1, 5, 7, 2 |

$\therefore \quad$ L.C.M $=5 \times 2 \times 2 \times 5 \times 7 \times 2=1400$
$20-14=25-19=35-29$
$=40-34=6$
$\therefore \quad$ The required number $=$ L.C.M -6
$=1400-6=1394$
15. (B) $A=5^{\text {th }}$ composite number $=10$
$B=6^{\text {th }}$ prime number $=13$
$\therefore \quad A-B=10-13=-3$
16. (D) From options
$17^{2}+24^{2}+34^{2}=289+576+1156=2021$
17. (A) Given
$2(l+b)=80 \mathrm{~m}$
$l+\mathrm{b}=\frac{80 \mathrm{~m}}{2}=40 \mathrm{~m}$
$l+15 \mathrm{~m}=40 \mathrm{~m}$
$l=40-15 m=25 m$
Area $=l \times \mathrm{b}=25 \times 15=375 \mathrm{~m}^{2}$
18. (B) Required number $=10 x+y$
19. (A) Perimeter of triangle
$=10 \mathrm{~cm}+15 \mathrm{~cm}+17 \mathrm{~cm}=42 \mathrm{~cm}$
Option 'A' perimeter $=2(l+b)$
$=2(15 \mathrm{~cm}+6 \mathrm{~cm})=2 \times 21 \mathrm{~cm}=42 \mathrm{~cm}$
20. (D) $\frac{6}{150}=\frac{2}{50} \times \frac{2}{2}=\frac{4}{100}=0.04$
21. (C) $6 \times \frac{2}{3} \times \frac{3}{2}=6$
22. (C) $\frac{4}{15}=0.266$

$$
\begin{aligned}
\frac{5}{17} & =0.294 & \frac{10}{33}=0 . \overline{30} \\
\frac{8}{27} & =0.296 & \frac{4}{15}<\frac{5}{17}<\frac{8}{27}<\frac{10}{33}
\end{aligned}
$$

23. (B) $\because \because(\bigcirc)=10+10+5=25$
24. (B) Let the capacity of the container be $x$ lines $\therefore \frac{3}{4} x=12$ litres
$x=12$ litres $\times \frac{4}{3}=16$ litres
25. (B) Cost of one kg wheat $=\frac{₹ 550}{50}=₹ 11$ Cost of 11 kgs wheat
= ₹ $11 \times 11=₹ 121$
26. (C) H.C.F $(4956,3894)=354$

Here 354 are the maximum daily wages.
The officer was appointed on contract money of $₹ 4956=354 \times 14$, i.e., he was appointed for 14 days. But he was paid $₹ 3894=354 \times 11$, i.e., he was present for 11 days. Hence, he was absent for 3 days
27. (B) Given, $x=64$
$x^{2}+12 x+36$
$=(64)^{2}+12(64)+36=4096+768+36$
$=4900$
28. (B) HCF of $200 \& 80$ is 40
$\therefore \quad$ Number of square pieces
$=\frac{200 \times 80}{40 \times 40}=10$
29. (B) Successor of least 5 digit number
$=10000+1=10,001$
Predecessor of greatest 3 digit number
= 999-1 = 998
Difference $=10,001-998=9003$.
30. (A) $8937 \times 648+8937 \times 122+8937 \times 230$
$=8937[648+122+230]$
$=8937 \times 1000$
$=8937000$
$\therefore \quad$ Answer is option (A).

## MATHEMATICS - 2 (MAQ)

31. $(B, C, D) 13+17=7+23=11+19=30$
and $13 \times 17=221,7 \times 23=161$
$11 \times 19=209$.
32. (A, B, D) It can be 9 black and 1 white marbles (OR)

It can be 7 black and 3 white marbles.

It can be 8 black and 2 white marbles.
33. (A, B, C) A triangle has 3 sides, 3 vertices \& 3 angles
34. (C, D) Let the number be

$$
\begin{aligned}
& 100 x+10 y+z \times 1 \\
& \text { Given } 100 x+10 y+z-(x+y+z) \\
& =99 x+9 y=9(11 x+y)
\end{aligned}
$$

$\therefore \quad$ It is divisible by 9
It is also divisible by 3
35. (A, C, D) The sum of two prime numbers need not be an even number because $2+$ $3=5$

## REASONING

36. (A)

37. (B)

$$
\begin{array}{ll}
1^{2}=1=1 \mathrm{NE} & 4^{2}=16 \mathrm{UR} \\
2^{2}=4=4 \mathrm{WO} & 5^{2}=25 \mathrm{VE} \\
3^{2}=9=9 \mathrm{EE} & 6^{2}=36 \mathrm{IX}
\end{array}
$$

38. (C)

 8 must be replaced with symbols. $26-8=18$.
39. (D)

40. (B) First letter represents shaded or (.) in combination of 3 circles $2^{\text {nd }}$ letter represents $\times$ marks i.e., PS is the code for last figure.
41. (A) Given analogy is a series of prime Numbers leaving 1 prime number in between. So, the correct answer is 29.
42. (C) Observe the symbols in each of the shapes and approximate it to a circle.

43. (C) Rule is $\boldsymbol{*} \rightarrow\left(\mathrm{b}=(\mathrm{a}+)^{2}\right.$
i.e., $7 \leqslant 1=(7+1)^{2}=8^{2}=64$
and $8 \rightarrow 4=(8+4)^{2}=12^{2}=144$
Similarly $3 \star 9=(3+9)^{2}=12^{2}=144$
44. (C) In all other figures, the number of ' $V$ ' shaped elements inscribed in the polygon are equal to the number of sides of polygon (D).

45. (C)


## CRITICAL THINKING

46. (C)
 should be the $168^{\text {th }}$ symbol in given pattern.
47. (B) Boxing, Tennis doubles, Basket ball, Hockey
48. (B) Hands of a clock point in opposite directions is 11 times every 12 hrs .

So, in a day the hands point in the opposite direction 22 times.
49. (A) 1
50. (B)


